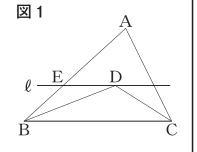
4 次の問題は、下のように証明できます。

問題

図1のように、 \triangle ABCにおいて \angle ABC の二等分線と \angle ACBの二等分線をひき、そ れらの交点をDとします。点Dを通り辺BC に平行な直線 ℓ をひき、直線 ℓ と辺ABとの 交点をEとします。



このとき、EB = EDとなることを証明しなさい。

証明

 \triangle EBDにおいて、

仮定から、 ∠DBC = ∠EBD ······①

ED // BCで、平行線の錯角は等しいから、

①, ② \sharp \mathfrak{h} , \angle EBD = \angle EDB

二等辺三角形は2辺が等しい三角形であるから.

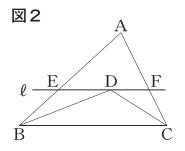
$$EB = ED$$

次の(1)から(3)までの各問いに答えなさい。

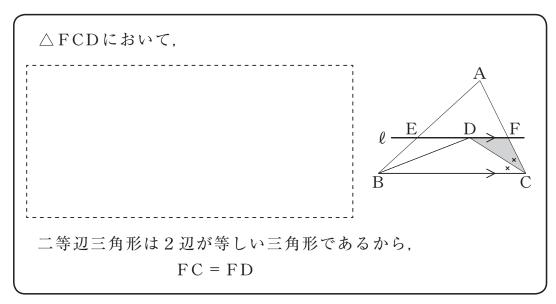
- (1) 上の証明の「仮定から、 $\angle DBC = \angle EBD$ ……①」における「仮定」を、下のアからエまでの中から1つ選びなさい。
 - ア BDは ZABC の二等分線である。
 - **イ** CDは∠ACBの二等分線である。
 - ウ 直線ℓは点Dを通り辺BCに平行な直線である。
 - I EB = ED σ δ δ

(2) 図2のように、図1の直線 ℓ と辺ACとの交点をFとします。このとき、FC = FDとなることを、 \triangle FCDが二等辺三角形であることから証明できます。

前ページの**証明**を参考にして、 FC=FDとなることの証明を完成しなさい。



証明



(3) \triangle EBDと \triangle FCDが二等辺三角形であることから、EB = ED、FC = FDであることを証明できます。

EB = ED, FC = FDであることをもとにすると、**図2**において、 $\triangle AEF$ の周の長さと等しいものがあることが分かります。それを下 の**ア**から**オ**までの中から1つ選びなさい。

- \mathbf{r} AE + AF
- 1 AE + AC
- ウ AB + AF
- I AB + AC
- \mathbf{J} DB + DC